

PURE Sound

Building a Straight Wire to the Soul of Music

1ET7040SA DATA SHEET

KEY SPECIFICATIONS

- Single-channel, analog-input Class D amplifier module
- Extended output power
- Negligible THD and IMD
- Extraordinarily low noise
- Load-invariant response
- Exceptionally clean clipping
- low losses & high efficiency
- log Easy to integrate

Output Power @ 1% THD	950W @ 2Ω 500W @ 4Ω 250W @ 8Ω
Output Current	~40A
THD+N	<0.00035% @ 200W, 4Ω, 1kHz
Dynamic Range	~129dB(A)
Output Noise	~14µV(A)
Gain	13dB
Output Impedance	<13μΩ @ 1kHz
Efficiency	94% @ 500W, 4Ω, 1kHz
Idle losses (output stage)	~2.8 W
Supply	±35V to ±70V DC
Size	95x63x36mm

1	Specifications	3
	.1 Absolute Maximum Ratings	3
	.2 Recommended Operating Conditions	3
	.3 Audio Characteristics	4
	.4 Typical Audio Performance, Graphs	5
	.5 Electrical Characteristics	8
	.6 Timing Characteristics	9
	.7 Mechanical Characteristics	9
2	Overview	
	2.1 Edge Connector, J3	
3	Power Supplies, Control Signals & I/O's	11
	1.1 Power Supplies	11
	3.1.1 Power Stage Supply (+VP, -VP)	11
	3.1.2 Gate Drive Supply (VDR)	12
	3.1.3 OPAMPs Supply (+VOP, -VOP)	12
	3.1.4 (optional) Digital Supply (VD)	12
	3.1.5 Power Supply Sequencing	12
	Control Signals	
	3.2.1 PSUDIS & /AMPON	13
	3.2.2 SCL & /FATAL	13
	3.2.3 SDA & READY	13
	Audio Inputs & Output	14
	3.3.1 Audio Input (IN+, IN-)	14
	3.3.2 Speaker Output (OUT+, OUT-)	14
	3.3.3 Speaker Feedback Sense Input (VFBLF+, VFBLF+)	15
4	Operating Modes & Status Reporting	
	1.1 Mode Selection (HS/ADDR Settings)	16
	HW Modes	17
	9.3 SW Mode	17
	4.3.1 PSUDIS (GPIO)	17
	1.4 I2C Register Map	18
5	Protection System	19
	5.1 Environmental checks	
	5.1.1 Over/Under-Voltage Protection (+VP, -VP, VDR, +VOP, -VOP)	19
	5.1.2 Temperature Protection	19
	0.2 Overcurrent Protection (OCP)	20
	0.3 Overload Protection (OLP)	
	DC Protection (DCP)	20
6	Mechanical Specifications & System Considerations	
	6.1 Module Dimensions	
	5.2 Thermal Requirements	
	5.3 Mechanical Requirements	
	6.4 Compliance Testing	23
7	Revision History	23

Figure 1 THD [dB] vs. Frequency @ 4Ω5)
Figure 2 THD+N [dB] vs. Power @ f=1kHz5)
Figure 3 Frequency Response @ V _i =2.83V5)
Figure 4 Output Impedance vs. Frequency5)
Figure 5 Frequency Spectrum (FFT) @ 1kHz, 1W, 4Ω6	5
Figure 6 Intermodulation Distortion @ 18+19kHz, 1W, 4Ω6	5
Figure 7 Frequency Spectrum (FFT) @ 1kHz, 10W, 4Ω6	5
Figure 8 Intermodulation Distortion @ 18+19kHz, 10W, 4Ω6	5
Figure 9 Frequency Spectrum (FFT) @ 1kHz, 200W, 4Ω6	5
Figure 10 Intermodulation Distortion @ 18+19kHz, 200W, 4Ω6	5
Figure 11 Output Power vs. VP @ 0.1% THD7	1
Figure 12 Output Power vs. VP @ 1% THD7	1
Figure 13 Power Stage Efficiency vs. Output Power7	
Figure 14 Power Stage Loss vs. Output Power7	1
Figure 15 Voltage Clipping/Recovery (behavior)7	1
Figure 16 Current Clipping/Recovery (behavior)7	1
Figure 17 ET7040SA top/side views 10)
Figure 18 Power Supplies	
Figure 19 Routing example, OUT+/1 and VFBLF+/15)
Figure 20 Dimensions22) -

Table 1 Absolute Maximum Ratings	3
Table 2 Recommended Operating Conditions	3
Table 3 Audio Characteristics	4
Table 4 Electrical Characteristics	8
Table 5 Timing Characteristics	9
Table 6 Mechanical Characteristics	9
Table 7 Edge Connector, J3	10
Table 8 Edge Connector, J3 front view w/ pin numbers and labels	10
Table 9 Mode Selection via HS/ADDR	16
Table 10 Status/Control signals in HW Mode	17
Table 11 Status/Control signals in SW Mode	17
Table 12 PSUDIS (GPIO) mapping	17
Table 13 I2C Register Map	18
Table 14 Revision History	

1 Specifications

1.1 Absolute Maximum Ratings

Referenced to GND unless otherwise noted.

	Parameter	Min	Max	Unit
	Power Stage Supply, positive rail voltage (+VP)	-0.3	75	V
Power	Power Stage Supply, negative rail voltage (-VP)	-75	0.3	V
	Gate Drive Supply, voltage, referenced to -VP(VDR)	-0.3	20	V
Supplies	OPAMPs supply, positive rail voltage (+VOP)	-0.3	20	V
	OPAMPs supply, negative rail voltage (-VOP)	-20	0.3	V
	Digital Supply, voltage (VD) (optional use)	-0.3	6	V
	Analog Inputs (+AIN, -AIN)	-15	15	V
I/0's	Logic-level outputs, continuous current (SMPS_OFF, READY)		50	mA
1/05	Logic-level inputs, voltage (/AMPON, SDA, SCL, /FATAL)	-0.3	4.2V	V
	Open-drain, bi-directional, continuous current (SDA)		50	mA
	Ambient temperature	0	100	°C
Env.	Heatsink temperature	0	100	°C
	Relative Humidity, non-condensing		85	%

Stress beyond Absolute Maximum Ratings may cause permanent damage to the Design and associated circuitry. Attempts to operate the Design within Absolute Maximum Rating but outside Recommended Operation Conditions (Table 2) may result in non-functional circuits and erroneous behavior.

Table 1 Absolute Maximum Ratings

1.2 Recommended Operating Conditions

Amplifier operation is permitted only under conditions stated in Table 2.

- 1		
Typ ¹⁾	Max	Unit
70	73.5	V
-70	-35	V
15	16.5	V
12	16.5	V
-12	-11.4	V
5	5.5	V
		•
10.32)	12	V
0	5	V
4	∞	Ω
0	1	μF
25	60	°C
25	75	°C
see note ⁴⁾)	°C/W
50	85	%
SI	0 4 0 25 25 25 ee note ⁴	0 5 4 ∞ 0 1 25 60 25 75 ee note ⁴⁾

Referenced to GND unless otherwise noted.

1) Audio Performance Specs are not guaranteed outside Typ. recommended operating conditions.

2) Corresponds to approximately full rated power in typ. load condition

3) The amplifier is stable into loads <2Ω. Output power into low impedances may be limited by the Over Current Protection system.

4) The required $\theta_{\text{HS-A}}$ depends highly on the desired sustained power delivery specification – see section 6.2)

Table 2 Recommended Operating Conditions

1.3 Audio Characteristics

 $R_{L}=4\Omega, \ T_{A}=25^{\circ} \ free \ operating \ air, \ f=1kHz, \ 20kHz \ AES17 \ filter, \ typical \ operating \ conditions (Table 2) unless \ otherwise \ noted.$

	Parameter	Conditions	Min Typ Max	Unit
		R∟= 8Ω, 0.1% THD	210	W
Po		R∟= 4Ω, 0.1% THD	420	W
	Output Power, Short term	R _L = 2Ω, 0.1% THD	8001)	W
	output Fower, Short term	R _L = 8Ω, 1%THD	250	W
		R _L = 4Ω, 1%THD	500	W
		R _L = 2Ω, 1%THD	950 ¹⁾	W
	Output Power, Continuous ²⁾	-	(as limited by thermal system)	-
THD+N ³⁾		P ₀ =1W, f=1kHz	0.001	%
		P ₀ =10W, f=1kHz	0.00035	%
	Taballa and a Distantian Alatia	P ₀ =200W, f=1kHz	0.00035	%
	Total Harmonic Distortion + Noise	P ₀ =1W, f=20-20kHz	0.001	%
		P ₀ =10W, f=20-20kHz	0.0009	%
		P ₀ =200W, f=20-20kHz	0.0008	%
IMD ³⁾		P ₀ =1W, f=18kHz+19kHz	0.0002	%
	Intermodulation Distortion, CCIF	P ₀ =10W, f=18kHz+19kHz	0.00015	%
		P ₀ =200W, f=18kHz+19kHz	0.0002	%
		P ₀ =1W, DIM30	0.002	%
	Dynamic Intermodulation Distortion, DIM	P ₀ =10W, DIM30	0.0012	%
		P ₀ =200W, DIM30	0.0009	%
ICN	Idle Noise, speaker output	A-weighted	14	μV
DNR	Dynamic Range	A-weighted, rel. to short term P_0 , $R_L = 4\Omega$	129	dB
SNR	Signal to Noise Ratio	A-weighted, rel. to short term P_0 , $R_L = 4\Omega$	129	dB
	-	R _L = 8Ω, V₀=2.83V@1kHz (=1W)	60/75	kHz
	Frequency Response, upper -3dB/-6dB	R∟=4Ω, V₀=2.83V@1kHz	60/75	kHz
		R _L = 2Ω, V₀=2.83V@1kHz	60/75	kHz
	Frequency Response, lower -3dB	-	(DC coupled)	-
BW		R _L = 8Ω, f= 20-20kHz	±0.01	dB
	Frequency Response, flatness	R∟= 4Ω, f= 20-20kHz	±0.01	dB
	r requency Nesponse, natness	$R_{L}=2\Omega$, f=20-20kHz	±0.01	dB
		R∟=∞Ω, f=20-20kHz	±0.01	dB
	Frequency Response, load variation	R _L = 2 -∞Ω, f= 20-20kHz	±0.01	dB
Zo	Output Impedance ⁴⁾	1kHz	12	μΩ
∠0		20-20kHz	<0.65	mΩ

1) Power into 2 Ω may be limited by the Over Current Protection system (OCP)

2) Continuous output power depends on properties of the thermal system.

3) THD and DIM readings may be limited by analyzer

4) Kelvin measurement on edge connector; 5A forced current.

Table 3 Audio Characteristics

1.4 Typical Audio Performance, Graphs

 $T_A=25^{\circ}$ free operating air, 20kHz AES17 filter, typical operating conditions (Table 2) unless otherwise noted.

T_A=25° free operating air, 20kHz AES17 filter, 16K/48kHz/32x avg. FFT's, Equiripple window, typical operating conditions (Table 2) unless otherwise noted.

-120

-140

0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

Frequency [Hz]

Figure 9 Frequency Spectrum (FFT) @ 1kHz, 200W, 4Ω

-120

-140

0 2k 4k 6k

20k

18k

10k 12k 14k 16k

Frequency [Hz]

8k

Figure 10 Intermodulation Distortion @ 18+19kHz, 200W, 4Ω

8-ohm load, f=1kHz

Overdrive to voltage clipping

M 100µs 12.5MS/s

1-ohm load, f=1kHz

Overdrive to current clipping

80.0ns/pt

м 100µs 12.5MS/s 80.0ns/kt Figure 15 Voltage Clipping/Recovery (behavior)

1.5 Electrical Characteristics

 $R_L=4\Omega$, $T_A=25^{\circ}$ free operating air, f=1kHz, 20kHz AES17 filter, typical operating conditions (Table 2) unless otherwise noted.

	Parameter		Condition	S	Min	Тур	Max	Unit
Current Co	onsumption & Efficiency							
IVP	Power Stage supply, current	(+VP,-VP), Idle			20		mA
I _{DR}	Gate Drive supply, current		ormal operation		95		mA	
IOP	OPAMPs supply, current		/OP), Normal ope		25		mA	
Ivp	uC and logic supply, current		mal operation		15		mA	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		R _L = 2Ω, 9			92		%	
η	Efficiency	$R_{L}=4\Omega, 5$				94		%
1	Lineleney	$R_{L} = 8\Omega_{1} 2$				95		%
Audio Inpu	its & Output					00		70
		Different	ial, pos. to neg.	input		4.4		kΩ
Rin	Input impedance		nded, input to GN		2.2		kΩ	
Av	Voltage Gain	V _o /V _i	•		13		dB	
$V_{\text{in}_01\%\text{THD}}$		To get 0.	1%THD		9.3		V _{rms}	
Vin_1%THD	Differential input voltage	To get 1%	6THD		10.3		Vrms	
CMRR	Common Mode Rejection Ratio	Audio inp			>60		dB	
PSRR	Power Supply Rejection Ratio		Vrms f≤1kHz ripp	le, either rail		>90		dB
V _{o_DC}	Speaker Output, DC offset		d analog inputs			<10		mV
		Idle (indi	cative)			515		kHz
fs	Switching frequency	Positive			>50		kHz	
		Negative			0		Hz	
Logic Con	trol Signals	5						
VIH	High level input threshold			2.7			V	
VIL	Low level input threshold	(/AMPON)			0.65	V	
VIH_I2C	High level input threshold		2.3			V		
VIL_I2C	Low level input threshold	(SDA)			1	V		
V _{OH_I2C}	High level output voltage		(SDA) Open-drain I=6mA		2.6			V
V _{OL_I2C}	Low level output voltage	(SDA)					0.6	V
I _{OL_I2C}	Low level sink current	(,					10	mA
VIH_SCL					1.65			
VIL_SCL		(22)					0.5	V
IIH_SCL	Open collector input	(SCL)	(SCL)				0.001	
I _{IL_SCL}							1	mΑ
looc							10	mA
Vooc	Open collector output	(/FATAL)					65	V
V _{OH}	High level output voltage				VD-0.7			V
Vol	Low level output voltage	(READY,			0.6	V		
Protectior		· · · · · · · · · · · · · · · · · · ·			<u> </u>			
I _{OCP}	Overcurrent Protection, threshold	Current I	imit			40		А
f _{DCP}	DC Protection, Speaker terminal		n filter corner fr			2.5		Hz
VDCP	Borrotection, Speaker terminal	Voltage I		12		V		
Totp	Thermal Protection, Heatsink	Over-ten		75		°C		
TUTP		Under-te		0		°C		
OVPvp			P), 1V hysteresis			75		V
OVPDR	Overvoltage Protection, threshold		5V hysteresis			17.5		V
OVPOP			/OP), 0.5V hyste	resis		18		V
UVP _{VP}	4		P), 1V hysteresis			35		V
UVPDR	Undervoltage Protection, threshold	-	5V hysteresis			12.5		V
UVPOP		(+V0P, -\	/OP), 0.5V hyste	resis		10.5		V

Table 4 Electrical Characteristics

1.6 Timing Characteristics

Typical operating conditions unless otherwise noted.

Parameter	Conditions	Min Typ	Max	Unit			
nals							
Mute time	Pin asserted high to Amp output HiZ	1		ms			
Un-mute time	Pin asserted low to Amp output LoZ	1.25		ms			
Start delay	Supplies stable to READY asserted high	1.25	1.25				
Amplifier failure to signal assertion	Failure to /FATAL low	40		ms			
PSU off signal	DC ¹⁾ failure to PSUDIS high	40		ms			
Mode Selection	Power-up to Mode latched	10		ms			
Systems							
OCP Mute cycle duration	OCP event to reenable outputs	>300		ns			
Overload Protection, threshold	Ratio of OCP cycles to non-OCP cycles	12		%			
OLP Mute cycle duration	OLP even to reenable outputs	1		S			
DCP Mute cycle duration	DCP even to reenable outputs	1		S			
	Als Mute time Un-mute time Start delay Amplifier failure to signal assertion PSU off signal Mode Selection Systems OCP Mute cycle duration Overload Protection, threshold OLP Mute cycle duration	alsMute timePin asserted high to Amp output HiZUn-mute timePin asserted low to Amp output LoZStart delaySupplies stable to READY asserted highAmplifier failure to signal assertionFailure to /FATAL lowPSU off signalDC11 failure to PSUDIS highMode SelectionPower-up to Mode latchedSystemsOCP Mute cycle durationOCP Mute cycle durationOCP event to reenable outputsOLP Mute cycle durationOLP even to reenable outputsDCP Mute cycle durationDLP even to reenable outputsDCP Mute cycle durationDLP even to reenable outputs	AlsPin asserted high to Amp output HiZ1Mute timePin asserted low to Amp output LoZ1.25Start delaySupplies stable to READY asserted high1.25Amplifier failure to signal assertionFailure to /FATAL low40PSU off signalDC ¹⁾ failure to PSUDIS high40Mode SelectionPower-up to Mode latched10SystemsOCP Mute cycle durationOCP event to reenable outputs>300Overload Protection, thresholdRatio of OCP cycles to non-OCP cycles12OLP Mute cycle durationOLP even to reenable outputs1DCP Mute cycle durationDCP event to reenable outputs1	AlsPin asserted high to Amp output HiZ1Mute timePin asserted high to Amp output LoZ1.25Un-mute timePin asserted low to Amp output LoZ1.25Start delaySupplies stable to READY asserted high1.25Amplifier failure to signal assertionFailure to /FATAL low40PSU off signalDC ¹⁾ failure to PSUDIS high40Mode SelectionPower-up to Mode latched10SystemsOCP Mute cycle durationOCP event to reenable outputs>300Overload Protection, thresholdRatio of OCP cycles to non-OCP cycles12OLP Mute cycle durationOLP even to reenable outputs1DCP Mute cycle durationDCP even to reenable outputs1			

1) Tested with 9.2V DC step on input

Table 5 Timing Characteristics

1.7 Mechanical Characteristics

	Parameter	Conditions	Min	Тур	Max	Unit
	Length			95		mm
SIZE	Width			63		mm
	Height			36		mm
		Diameter		M3		-
Mounting	Threaded standoff	Available thread depth			4	mm
		Torque ¹⁾			0.5	Nm

1) Observe torque spec for the selected standoff/screw/nut.

Table 6 Mechanical Characteristics

2 Overview

Figure 17 ET7040SA top/side views

2.1 Edge Connector, J3

Pin	Signal	Rating	1/0	Description
Power Supplie	S			· ·
1, 2, 3, 4, 7	+VP		Р	Power Stage Supply, positive rail
5, 6, 8, 9, 11, 12	GND		-	Ground
10, 13, 14, 15, 16	-VP		Р	Power Stage Supply, negative rail
17	VDR	Table 2	Р	Gate Drive Supply, referenced to -VP
18	VD	Table 2	Р	(optional use) External Voltage supply to on-board 3.3V regulator
37, 40, 41, 43, 46, 49, 52	GND		-	Ground
38	-VOP		Р	OPAMPs, negative rail
39	+VOP		Р	OPAMPs, positive rail
I/O's				
19, 20, 21, 22, 23, 24, 25, 27	OUT-		0	Speaker Output, negative (internally connected to GND)
26	VFBLF-			Feedback Sense input, negative
28, 30, 31, 32, 33, 34, 35, 36	OUT+		0	Speaker Output, positive
29	VFBLF+			Feedback Sense input, positive
42, 50, 51	NC		-	Not connected
44	IN+	T		Analog Input, positive
45	IN-	Table 2		Analog Input, negative
47	HS/ADDR			Mode/I2C Address Selection; set by one 1% resistor.
48	PSUDIS		0	PSU off control signal (SW Mode), or
40	/AMPON			Amplifier Disable (HW Mode) – pull low to enable Amp
53	SDA		I.	I2C Data (SW Mode), or
53 READY			0	Amplifier Ready (HW Mode) – "all good for operation" when high
54	SCL		 0	I2C clock (SW Mode), or
J4 /FATAL				Amplifier "error/fail" (HW Mode) – signal goes low on error

52	49	46	43	40	37	34	31	28	25	22	19	16	13	10	7	4	1
GND	GND	GND	GND	GND	GND	OUT+	OUT+	OUT+	OUT-	OUT-	OUT-	-VP	-VP	-VP	+VP	+VP	+VP
53	50	47	44	41	38	35	32	29	26	23	20	17	14	11	8	5	2
SDA	NC	ADDR	IN+	GND	-VOP	OUT+	OUT+	VFBLF+	VFBLF-	OUT-	OUT-	VDR	-VP	GND	GND	GND	+VP
54	51	48	-	42	39	36	33	30	27	24	21	18	15	12	9	6	3
SCL	NC	/AMPON		NC	+VOP	OUT+	OUT+	OUT+	OUT-	OUT-	OUT-	VD	-VP	GND	GND	GND	+VP

Table 8 Edge Connector, J3 front view w/ pin numbers and labels

3 Power Supplies, Control Signals & I/O's

3.1 Power Supplies

Refer to below figure showing required power supplies and how to connect these to 1ET7040SA:

Figure 18 Power Supplies

Voltage, current and power ratings are described in detail in Table 2 Recommended Operating Conditions and Table 4 Electrical Characteristics.

3.1.1 Power Stage Supply (+VP, -VP)

1ET7040SA requires a ground-centered split-rail supply for the amplifier output stage.

Multiple factors need to be considered when determining capabilities of this supply, e.g., peak/continuous audio power requirements, nominal/minimum (speaker) load, thermal constraints and time constants/durations etc.

Refer to Figure 11 or Figure 12 to determine the required DC voltage based on desired nominal output power.

For a given supply voltage and output power specification, the power supply peak power and peak current can be estimated:

$$P_{psu_peak} = 2 \frac{P_{out_rms}}{\eta}$$
; $I_{psu_peak} = \frac{P_{psu_peak}}{VP}$

The supply should be designed such that each rail has enough thermal headroom to drive full peak power for a minimum of one half-period of the lowest desired audio frequency or as otherwise required for continuous power delivery as determined by the system integrator. The 1ET7040SA design limits power delivery only if 0CP or 0TP events are triggered and in practice, especially in multichannel applications, the power supply often is the limiting factor for sustained power delivery.

Although 1ET7040SA includes over- and under-voltage protection (OVP/UVP) the power supply designer should pay close attention to managing "supply pumping". As example, by either ensuring that the supply can sink current or by utilizing enough electrolytic energy storage to keep rail voltages within recommended operating

PURIFI Information

range in all use situations. In a stereo/multichannel application it is recommended to alternate the phase of channels such that PSU rails are loaded as balanced as possible. However, this alone is not enough remedy to always avoid supply pumping and it is the responsibility of the system integrator to define and ensure adequate levels of caution.

3.1.2 Gate Drive Supply (VDR)

1ET7040SA requires an external supply for the gate drive circuitry. It is essential that the supply is designed as a floating rail, that must be referenced to -VP.

VDR directly feeds the low-side gate driver; the design utilizes boot-strap circuitry to create a rail relative to high-side driver.

3.1.3 OPAMPs Supply (+VOP, -VOP)

1ET7040SA requires an external ground-centered split-rail supply for the modulator and general analog low-power circuitry.

3.1.4 (optional) Digital Supply (VD)

The design includes a 3.3V regulator running of +VOP and therefore do not require an external power supply for the digital section. Connect VD to an external 5V supply if you want to avoid powering the uC from the op amp supplies, or if you want to be able to communicate with the module via I2C when the op amp supplies are powered down.

3.1.5 Power Supply Sequencing

1ET7040SA monitors all supplies <u>with exception of the optional VD supply</u> and prevents operation unless all supply voltages are within preset safe thresholds.

3.2 Control Signals

3.2.1 PSUDIS & /AMPON

Signals share the same physical net and adapts function according to Operation mode (refer to section 4).

The net is tied directly to a microcontroller GPIO pin and has a $27k\Omega$ pull-up to 3.3V.

3.2.2 SCL & /FATAL

Signals share the same physical net and adapts function according to Operation mode (refer to section 4).

The signal is connected to the collector of a transistor which has the emitter tied to a uC GPIO pin and the base tied permanently to 3.3V via a $3.3k\Omega$ resistor.

As SCL, the transistor will level-shift the incoming signal to levels suitable for the uC.

As /FATAL, the transistor will pass output from the microcontroller and function as open-collector output.

3.2.3 SDA & READY

Signals share the same physical net and adapts function according to Operation mode (refer to section 4).

The net is tied directly to a microcontroller GPIO pin.

As SDA, the signal is a bi-directional (open-drain) I/O and complies with the general I2C specification in terms of levels and timing.

As READY, the signal is configured as CMOS-level compliant logic output.

3.3 Audio Inputs & Output

3.3.1 Audio Input (IN+, IN-)

1ET7040SA has a differential analog input.

The behavior of the input can be described as equivalent to a traditional differential, op-amp configuration with gain and input resistance as listed in Table 4.

For best performance, the amplifier gain is kept reasonably low. If desired, a separate gain stage can be implemented upstream to 1ET7040SA. It is up to the system integrator to specify the properties of any pre-gain/signal-conditioning circuitry as well as test how it affects the rest of the system.

Amplifier clipping is a function of supply voltage (VP), amplifier gain and audio input voltage. As example, in nominal operating conditions (see table) a balanced analog input of 9.3Vrms sine is required for the output to produce a signal with ~0.1% THD indicating the point where the amplifier starts to clip at nominal conditions.

3.3.2 Speaker Output (OUT+, OUT-)

1ET7040SA has a single-ended ground-centered speaker output.

The system integrator might notice that the OUT- terminal is connected to GND and be tempted to route the negative speaker terminal to GND elsewhere in the system. This, however, should be avoided as the internal feedback connections sense the voltage between OUT+ and OUT- terminals. Best performance is achieved by treating the speaker outputs as a balanced pair.

Bridging two 1ET7040SA modules may result in performance degradation as the circuit is not configured to sense the voltage differential that exists between the (now unused) OUT- terminals of the two 1ET7040SA Designs. Bridging is therefore not recommended, and all operation and performance specs are void in this configuration. It should be noted, that while the protection amplifier systems remain fully intact in a bridged configuration, it is not possible for the individual half-bridges (modules) to detects a DC across the speaker load (i.e. between two modules).

3.3.3 Speaker Feedback Sense Input (VFBLF+, VFBLF+)

The terminals VFBLF+ and VFBLF+ are important feedback sense connections and correct configuration is essential to operation of the amplifier:

 $\label{eq:VFBLF+must} VFBLF+ must be connected to OUT+, preferably close to the positive speaker terminal block.$

VFBLF- must be connected to OUT-, preferably close to the negative speaker terminal block.

Please refer to below example from the Purifi font-end design (FE03). Notice the two parallel VFBLF+/- traces running closely coupled next to the OUT+/- traces and connected via two 0603 1Ω resistors close to the speaker connector footprints.

Figure 19 Routing example, OUT+/1 and VFBLF+/-

4 Operating Modes & Status Reporting

The amplifier can operate in two modes:

- 1. HW Mode: all control via pins (HW interface)
- 2. SW Mode: enables I2C control (I2C interface)

Modes are selected via resistor value programming, please see Table 9

4.1 Mode Selection (HS/ADDR Settings)

The programming resistor must be connected between the HS/ADDR pin and GND. Setting of the HS/ADDR signal defines operation mode and I2C address per following table:

Mode	I2C Address	Resistor: HS/ADR to GND
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Hardware Mode	-	(not populated)
	0x50	0
	0x51	1K9
	0x52	3К9
	0x53	6K8
	0x54	10K
	0x55	12K
	0x56	18K
Software Mode	0x57	22K
	0x58	27K
	0x59	33K
	0x5A	47K
	0x5B	56K
	0x5C	82K
	0x5D	120K
	0x5E	190K
	0x5F	390K

*) Resistors must be 1% or better.

Table 9 Mode Selection via HS/ADDR



#### 4.2 HW Modes

In HW Mode the channel controller monitors and operates all available circuits for environmental checks (Over/Under-voltage, Temperature) and all protection circuits (Current limiting, Overload protection, DC protection and Frequency protection).

Status and control information are accessible via three signals (nets):

NET	Signal	Rating	1/0	Description	
J3,48	/AMPON		I	Amplifier Disable – pull low to enable Amp	
J3,53	READY	Table 2	0	Amplifier Ready – "all good for operation" when high	
J3,54	/FATAL		0	Amplifier "error/fail" – signal goes low on error	
Table 10 Status/Control signals in HW Mode					

Table TO Status/Control signals in HW Mode

#### 4.3 SW Mode

The main feature of the SW Mode is access via I2C to an expanded amount of status and control information.

I2C is accessed via SCL, SDA.

In addition to status/control information accessible via I2C, one hardwired output signal (PSUDIS) is available.

Pin	Signal	Rating	1/0	Description	
J3,48	PSUDIS		0	PSU off control signal	
J3,53	SDA	Table 2	I	I2C Data	
J3,54	SCL		Ι	I2C clock	

Table 11 Status/Control signals in SW Mode

#### 4.3.1 PSUDIS (GPIO)

PSUDIS is essentially a GPIO which can be configured via the I2C register. Per default, GPIO is set to echo the AmpFail flag and is intended to be used to control the power supplies on and off.

It is possible to force the GPIO (i.e., SMPS_OFF) high or low via the I2C register - this enables control of the power supplies via the amplifier I2C interface.

DPIOVal	GPIOAmpFail	Description
0	0	GPIO is forced low
1	0	GPIO is forced high
Х	0	Reserved
Х	1	GPIO echos the AmpFail flag
	DPIOVal 0 1 x x x	DPIOVal GPIOAmpFail   0 0   1 0   x 0   x 1

Table 12 PSUDIS (GPIO) mapping



### 4.4 I2C Register Map

Reg	Name	Data type	R/W	Description
	Channel count	High Nibble	R	1 = module has one active channels
0x00	Product Type	Low Nibble	R	1 = amplifier module
0x01	ID	Integer	R	0x1B 0x1B80 = 7040(dec)
0x02		-		0x80
0x03	Version	High Nibble	R	Hardware revision number
	Revision	Low Nibble	R	Hardware sub-revision number
0x04 0x05	Serial	Integer		Serial number (convert hex to dec to get serial number)
0x06	Firmware	High Nibble	R	Firmware revision number
		Low Nibble	R	Firmware sub-revision number
0x07	Reserved	-	-	
0x08	Reserved	-	-	
	Reserved	Bits 7-4	-	
	GPIOAmpFail	Bit 3	W	Set to make pin high when AmpFail is high, and Hi-Z otherwise
0x09	GPIODir	Bit 2	W	Set low for using GPIO feature
	GPIOVal	Bit 1	W	GPIO pin value
	AmpEnable	Bit 0	W	Request to turn on amplifier
	Reserved	Bits 7-3	-	
0x0A	ICLIP VCLIP	Bit 2 Bit 1	R	Flags that current limiting has happened since this flag was last read
			R	Flags that at clipping has happened at least once since this flag was last read
	AmpReady Reserved	Bit 0	R -	Power stage is switching and passing signal
		Bit 7		
	AmpFail OverTemp	Bit 6 Bit 5	R R	Flags that DC at the output persisted after turning the power stage off
	MinVOPOver		R	Temperature too high.
0x0B		Bit 4	R	Negative op-amp supply too high.
	PlusVOPOver VDROver	Bit 3 Bit 2	R	Positive op-amp supply too high. VDR too high.
	MinHVOver	Bit 1	R	Negative high-voltage supply too high.
	PlusHVOver	Bit 0	R	Positive high-voltage supply too high.
	Reserved	Bits 7-6	-	
	UnderTemp	Bit 5	R	Temperature too low.
	MinVOPUnder	Bit 4	R	Negative op-amp supply too low.
0x0C	PlusVOPUnder	Bit 3	R	Positive op-amp supply too low.
0,00	VDRUnder	Bit 9	R	VDR too low.
	MinHVUnder	Bit 1	R	Negative high-voltage supply too low.
	PlusHVUnder	Bit 0	R	Positive high-voltage supply too low.
	Reserved	Bits 7-2	-	
0x0D	OverloadError	Bit 1	R	Power stage is temporarily turned off after a sustained overcurrent event
	DCError	Bit 0	R	Power stage is temporarily turned off after DC was detected on the output.
0x0E	PlusVP	Unsigned short	R	Measured positive high-voltage rail in volts
0x0F	MinVP	Unsigned short	R	Measured negative high-voltage rail in volts
0x10	VDR	Unsigned short	R	Measured VDR in decivolts.
0x11	Temperature	Signed short	R	Measured temperature in °C
0x12	DC	Signed short	R	Measured output DC in volts
0x13	For			Massurad switching froquency in units of 25017
0x14	Fsw	Unsigned int	R	Measured switching frequency in units of 250Hz.
0x15	PlusVOP	Unsigned short	R	Measured positive op amp supply, in decivolts
0x16	MinVOP	Unsigned short	R	Measured negative op amp supply, in decivolts
0.15	·			
0x17 0x1F	Reserved	-	-	

Table 13 I2C Register Map



## **5** Protection System

1ET7040SA is protected from overload and failure by means of several protection circuits. All systems are continuously active while the amplifier is powered and operating.

#### 5.1 Environmental checks

Environmental checks denote circuits that monitor operating conditions maintained or affected by external sources or influences such as power supply voltages and ambient/system temperatures.

Environmental checks are enabled in both HW Mode and SW Mode.

#### 5.1.1 Over/Under-Voltage Protection (+VP, -VP, VDR, +VOP, -VOP)

The high voltage supply rails (Power Stage Supply) must be within certain thresholds for safe operation. If supply levels are outside min-to-max thresholds denoted in table below the Amplifier power stage output is brought immediately into high-impedance state (HIZ).

In HW Mode an OVP/UVP condition asserts the READY signal low. It is recommended that the system host monitors this signal.

In SW Mode OVP/UVP states are reported in the I2C register, please refer to the I2C register map for details.

#### 5.1.2 Temperature Protection

1ET7040SA utilize circuitry to monitor the temperature of the FET flange mounted on the aluminum back plate (used for cooling the FET's) and take appropriate action conditions are outside recommended operating range.

An OTP/UTP condition brings the amplifier output into high-impedance state (stop switching). Normal operation automatically resumes once temperatures return within the tolerable range and no involvement from user or system host controller is required.

In Hardware Mode an OTP/UTP condition asserts the READY signal low for as long as the temperature is out of tolerable range. It is recommended that the system host monitors this signal.

In Software Mode OTP/UTP status and actual measured temperature are reported in the I2C register, please refer to the register map for additional information.



#### 5.2 Overcurrent Protection (OCP)

The amplifier is protected against short- and long-term high-current overload.

A system monitors the output stage current and abruptly engages a *protection cycle(OCP cycle*) if a pre-set overcurrent threshold is exceeded. During a *protection cycle* the power stage output is flipped, i.e., if the overcurrent event concerns the high-side FET the half-bridge output will be force low, and reversely, if the overcurrent event concerns the low-side FET the half-bridge will be forced high. The duration of a *protection cycle* is approximately ~300nS or until the output current has decreased below a safe threshold. The combined behavior of the OCP circuit is comparable to a current-limiter function.

Extended current-limiting can result in triggering of the Overload Protection (refer to section 5.3).

Following a *protection cycle*, normal operation is automatically resumed and no involvement from user or system host controller is required.

OCP is enable in both modes of operation (SW Mode, HW Mode).

OCP is reported in the I2C register (ICLIP) when operating in SW Mode.

#### 5.3 Overload Protection (OLP)

To safeguard the amplifier against continuous operation at the OCP threshold (current-limiting) a circuit keeps track of OCP cycles as function of time. If the amplifier is running in current-limiting more than approximately 12% over time *an OLP mute cycle* is triggered. In events of continuous OCP the OLP triggers after approximately 10ms. During a *mute cycle* the output stage is disabled (left in high-impedance state) approximately 1 second.

Following a *mute cycle*, normal operation is automatically resumed and no involvement from user or system host controller is required.

OLP is enabled in both modes of operation (SW Mode, HW Mode).

OLP is reported in the I2C register (OverloadError) when operating in SW Mode.

#### 5.4 DC Protection (DCP)

The amplifier audio signal channel is capable of passing DC signals, i.e., the audio channel does not include any form of low-cut (high-pass) filtering. To protect the speaker against potentially harmful DC signals the amplifier includes a circuit that monitors the speaker output and disables the power stage should certain conditions be exceeded. The speaker output signal is low-pass filtered with a corner frequency below the audible range and if the filtered signal exceeds a preset threshold a DCP *mute cycle* is triggered.

Following a *mute cycle*, normal operation is automatically resumed <u>only</u> if the DC is reduced within safe thresholds. If so, no involvement from user or system host controller is required. However, if DC persist at the end of the *mute cycle*, the power stage is latched off and will stay off until the user or system host controller takes deliberate action to restart operation.

DCP is enabled in SW Mode and HW Mode.

DCP-latch-off condition is reported in the I2C register (AmpFail) when operating in SW Mode. Note that a DCP *mute cycle* is not reported.



It is recommended to frequently poll the AmpFail flag and control the power supply accordingly. Alternatively, program the GPIO pin to output the state of AmpFail flag and use that to shut down the power supply in case of a failure.

In HW Mode, DCP-latch-off condition asserts /FATAL signal low. It is recommended that the /FATAL signal is used to switch off the power supply.

21



## 6 Mechanical Specifications & System Considerations

#### 6.1 Module Dimensions



Figure 20 Dimensions



#### 6.2 Thermal Requirements

Although 1ET7040SA has very low idle losses and high overall efficiency, adequate cooling is essential for sustained power delivery. Careful considerations must be given to design of the thermal system in order to achieve desired output power specifications.

It is recommended to mount the module on a heatsink, e.g., an adequately design aluminum chassis.

#### 6.3 Mechanical Requirements

It is the responsibility of the system integrator to ensure integrity of mounting method and materials used. It is recommended to thoroughly test the final product for robustness against, e.g., shock and vibration.

#### 6.4 Compliance Testing

1ET7040SA is designed with considerations for robustness of the end application. However, it is the responsibility of the system integrator to ensure any form of design-for-compliance and associated testing/certification which may be required.

## 7 Revision History

Rev	Date	Description	ID
(0.90)	2021-07-14	Pre-release datasheet	CNN
(0.92)	2023-01-04	Minor fixes	CNN

Table 14 Revision History

#### 1ET7040SA - Data Sheet



1 MODULE Use Restrictions and Warnings: 1.1 MODULES ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS. 1.2 User must read and apply the user guide and other available documentation provided by PURIFI ApS regarding the MODULE prior to handling or using the MODULE. 1.3 Safety-Related Warnings and Restrictions: 1.3.1 User shall operate the MODULE within PURIFI ApS's recommended specifications and environmental considerations stated in the specification or other available documentation provided by PURIFI APS, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the MODULE may cause personal injury or death, or property damage. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the MODULE and/or interface electronics. Please consult the MODULE documentation prior to connecting any load to the MODULE output. During normal operation, even with the inputs and outputs are kept within the specified allowable ranges, some circuit components may have elevated case temperatures. When working with the MODULE, please be aware that the MODULE may become very warm. If there is uncertainty as to the ratings and specifications, please contact PURIFI ApS prior to connecting interface electronics including input power and intended loads. 1.3.2 MODULEs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the MODULE by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the MODULE and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the MODULE by User or its employees, affiliates, contractors or designees. 1.4 User assumes all responsibility and liability to determine whether the MODULE is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the MODULE and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the MODULE consistent with all applicable international, federal, state, and local requirements.

2. Accuracy of Information: To the extent PURIFI ApS provides information on function of MODULEs, PURIFI ApS attempts to be as accurate as possible. However, PURIFI ApS does not warrant the accuracy of MODULE descriptions or other information on its websites as accurate, complete, reliable, current, or error-free.

3. Disclaimers: 3.1 EXCEPT AS SET FORTH ABOVE, MODULES AND ANY WRITTEN MODULE MATERIALS PROVIDED WITH THE MODULE (AND THE DESIGN OF THE MODULE ITSELF) ARE PROVIDED "AS IS". PURIFI APS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, REGARDING TO E.G. BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. 3.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE MODULE SET FORTH HEREIN, NOTHING IN THESE TERMS AND CONDITIONS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF PURIFI APS, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE MODULE IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT MADE, CONCEIVED OR ACQUIRED PRIOR TO OR AFTER DELIVERY OF THE MODULE.

4. USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD PURIFI APS, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE MODULE THAT IS NOT IN ACCORDANCE WITH THESE TERMS AND CONDITIONS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR LAW OF TORT, CONTRACT OR ANY OTHER LAW, AND EVEN IF THE MODULE FAILS TO PERFORM AS DESCRIBED OR EXPECTED.

5. Limitations on Damages and Liability: 5.1 General Limitations. IN NO EVENT SHALL PURIFI APS BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS AND CONDITIONS OR THE USE OF THE MODULES PROVIDED HEREUNDER, REGARDLESS OF WHETHER PURIFI APS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST PURIFI APS MORE THAN ONE YEAR AFTER THE RELATED INCIDENCE HAS OCCURRED. 5.2 Specific Limitations. IN NO EVENT SHALL PURIFI APS'S AGGREGATE LIABILITY FROM ANY WARRANTY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS AND CONDITIONS, OR ANY USE OF ANY PURIFI APS MODULE PROVIDED HEREUNDER, EXCEED THE TOTAL AMOUNT PAID TO PURIFI APS FOR THE PARTICULAR UNITS SOLD UNDER THESE TERMS AND CONDITIONS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM AGAINST THE PARTICULAR UNITS SOLD TO USER UNDER THESE TERMS AND CONDITIONS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM AGAINST THE PARTICULAR UNITS SOLD TO USER UNDER THESE TERMS AND CONDITIONS SHALL NOT ENLARGE OR EXTEND THIS LIMIT.

6. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of Denmark, excluding Denmark's conflict-of-law rules, leading to the use of other law than the laws of Denmark. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within the courts of Denmark and consents to venue in Copenhagen, Denmark. Notwithstanding the foregoing, any judgment may be enforced in Danish court, and PURIFI ApS may seek injunctive relief in Denmark or foreign countries.

24